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In recent years the synthesis of orgasigorganic hybrid Scheme 1. Synthesis of 3
materials has become an important target. This was impressively Ph
shown by I. Manners who discovered the ROP of silaferro- »(Q /B\
cenophanes which provide access to poly(ferrocenylsilanesjay N/ /H—O 0-H
ferrocenophanes with different main group elements in the bridging C \Alf ((
position are known, including a ferrocenophane with alumifum. Ni \\’H\ [OH
Since then, aluminum containing organiaorganic hybrid materi- 4 )@_ B
als is a fascinating subject. Current ongoing research in our group ’/Q / Ph
showed that the germanium(ll) compound Ge[N(SiMle can be N A \
used to convert a proton to a hydride to generate the germanium- C Al
(IV) cluster [(RSIQGeH)y].2 As an alternative powerful reducing N toluene/-78°C @
agent we introduced the aluminum(l) compound LA (L = HC- ’@ * 2 PhBOH), — 55— N @
(CMeNAr),, Ar = 2,6iPrCgHz)* to transfer two electrons to 1 C \Al\«'o"""B\wo
generate aluminum(lll) species such as (LRI} and (LAI),O,.6 % i N To=8{
The easy formation of the latter compounds and the [(RSibi)] N T H + 2 PhBOH), % ,\@'
cluster prompted us to investigate the redox reaction of LAl and >A1< v 3
PhB(OH) due to the easy electron transfer and the favorable \
formation of an AFO—B bond. We investigated the reaction of )@ Th
LAIH, (2)” with PhB(OH) to take advantage of the different 2 N */Q ,O/B\
polarity of the hydrogen atoms in both compounds, which should N /H"‘H' O;H
lead to an easy hydrogen elimination. A ‘(

The reaction ofL. with PhB(OH} in a 1:2 molar ratio (Scheme N ‘%H;O (H
1) resulted in an unprecedented formation of LAI[(OB)(3). \lla'
The color of the solution changes from red to colorless when the Ph

temperature of the solution is slowly raised to Z0. During the

course of the reaction hydrogen gas evolution was obse®ed. 4igity of the intermediate LAI[OB(Ph)OH]eads to the elimination
separated after cooling as colorless crystals from the concentrated,¢ \yater under AIGB, ring formation. The formation o8 through
toluene solution.3 is soluble in toluene, benzene, and trichlo- the intermediat@ is driven by the exothermic AIO bond enthalpy.
romethane. _ ) _ o The H, elimination is favored through the hydridi2)(and protonic
3 was characterized b1 and**C NMR investigation in CDGl hydrogen (PhB(OH) atoms. Compoun@ is an unique example

50'“?0”' as well as by EI-MS, IR, and elemental analysis. Fhe o 5 gpjro-centered aluminum atom, showing the inorganic;RIO
and 13C NMR spectra both exhibit one set of resonances for the ring fused to the organic 48l part. There is only one inorganic

aryl groups both on boron and on the ligand, indicating a symmetric spirocyclic aluminum compound known of composition [(PhBXD)

molecule. The El mass spectrum shows the molecular i@(iwfz (OBPh)AI,Cl;] which was prepared from (PhB@pnd AICk,
668) with 100% intensity. In the IR spectrum 8f there are no where both rings have the same composifion.

absorption bands above 3000 chwhich originate from the OH Single crystals of X-ray quality were obtained from a toluene
groups of the starting material (br, 3168400 cnt). 3is thermally solution of3 at low-temperature, crystallizing in the triclinic space
stable, as indicated by its melting point (338). To support and 4,65 P1.° The structural analysis unambiguously ascertains the
understand the easy formation®ive also reacted LAIBI(2) with composition of3. Its molecular structure is shown in Figure 1. One
PhB(OH). The reaction proceeds under elimination of hydrogen 4jyminum atom, two boron atoms, and three oxygen atoms form a
and water. Here, toc is formed in a comparable yield. ~ six-membered planar Al§B, ring. The central Al atom is located
For the progress of the two reactions we assume two similar i, the spirocyclic center of the two fused six-membered ring8l§C
concerted mechanisms through the intermedfatégrom 1) or B Al and AIOsB,). The AI—O bond length (av 1.750 A) is longer
(from 2) shown in Schemé. Proceeding fron to 3, the aluminum- than the terminal AFOH bond distance (av 1.705 A) in LAI-
(I) of 1 is oxidized to aluminum(lll) 8) under formation of one (OH),.20 The O-Al—0 angle (104.7(3) is sharper than that in
equivalent of hydrogen resulting from two pr_otons of the two LAI(OH), (115.38(8}). The differences in bond length and bond
molecules of PhB(OH) The exothermic formation of the AlO angle of3 with those in LAI(OH) might be due to a certain strain
bonds is the driving force in this reaction. The increase of the proton | iihin the six-membered rings & The B(2)-O(2) bond length
 Institut fir Anorganische Chemie. (1.326(10) A) adjacent to the aluminum atqm is distinctly shorter
*Institut fir Physikalische Chemie. than that of the B(2}YO(1) (1.415(11) A) with the consequence

12406 = J. AM. CHEM. SOC. 2006, 128, 12406—12407 10.1021/ja064035w CCC: $33.50 © 2006 American Chemical Society



COMMUNICATIONS

Figure 1. Molecular structure o8; thermal ellipsoids set at 50% probability.
All hydrogen atoms and the toluene molecule are omitted for clarity.
Selected bond lengths [A] and angles [deg]: N(&)(1) 1.877(6), N(2)-
Al(1) 1.872(6), Al(1)-0O(2) 1.754(5), Al(1)-O(3) 1.745(5), O(2yB(2)
1.326(10), O(3)-B(1) 1.339(10), B(2)O(1) 1.415(11), O(+)yB(1) 1.401-
(10), B(2)-C(21) 1.574(11), B(:yC(11) 1.559(11); N(2yAI(1)—N(1)
98.8(3), O(2)-Al(1)—0(3) 104.7(3), O(3yAI(1)—N(2) 113.2(3), O(2y
Al(1)—N(2) 111.9(3), O(3)Al(1)—N(1) 115.0(3), O(2y Al(1)—N(1) 113.6-

(3), O(3y-B(1)—0(1) 122.4(7), B(2yO(2)—Al(1) 121.7(5), O(2)-B(2)—
O(1) 122.5(8), B(1)O(3)—Al(1) 121.7(5).

Table 1. Calculated Bond Lengths and Angles
distance A angle [deg)
Al(1)—0(2) 1.7901 O(2yAl(1)-0(3) 100.81
Al(1)—0(3) 1.7896 O(3)B(1)-0(1) 119.65
B(2)-0(1) 1.4137 O(2)B(2)-0(1) 119.37
B(2)—0(2) 1.3749 N(1)-Al(1)-N(2) 98.89

that the A-O bond lengths ir8 increase when compared to those
in LAI(OH), and (LAI),OsAIMe (1.708-1.726 A)!l The wider
O—B—0 bond angles (122.4(7)122.5(8)) in comparison to the
O—AI—-0 (104.7(3)) are a consequence of the lower coordination
number at boron compared to that at aluminum.

The ab initio calculations were performed with the aim of
clarifying the bonding situation in the target molecule and giving
further insight into the reaction mechanism. The calculations were
performed at the well-established DFT level of theory making use
of the B3LYP functiond?!® as implemented in the Gaussian
program packadé making use of a basis-set termed 6-3%G8
The analysis of the binding situation was performed at the calculated
equilibrium geometry of the compound by means of a NBO
analysist®2?1 The determination of the reaction mechanism cannot
be easily performed due to the fact there are three molecules
involved and would surely go far beyond the scope of this work.

The investigation of the mechanism was performed by locating
a transition-state structure on the potential hypersurface and also
by taking a closer look at the possible alternative mechanism. The
possible routes involving a two-step mechanism start with either
hydrogen or water formation. Assuming that élimination is the
first step of the reaction does not lead to the desired compound
due to the rearrangement taking place in the-BrOH unit (Figure
S1, see Supporting Information). However the condensation as the
first step looks quite promising as the transition state diagram
indicates (Figure S2, see Supporting Information). But trying to
reach the target molecule from this transition state is impossible
due to the fact that the bond formation between aluminum and
oxygen does not take place. Having ruled out this possible
mechanistic explanation, it is quite reasonable that the calculated
transition state shown in Figure S3 (see Supporting Information)
is the crucial step in this reaction. The calculations indicate that
the reason for the formation of the transition structukeand B
proposed here is valid.

In summary the different reactions between PhB(Okf)h LAI-
() or LAIH »(111) result in the same compour@lin high yields.
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